Assessing Delay Propagation in Airline Plans: An Update

Amy Cohn, Shervin AhmadBeygi, and Marcial Lapp, University of Michigan

Peter Belobaba, MIT

IAB Meeting – Cambridge, MA October 25, 2007

Michigan**Engineering** Industrial and Operations Engineering

M.I.T. Global Airline Industry Program

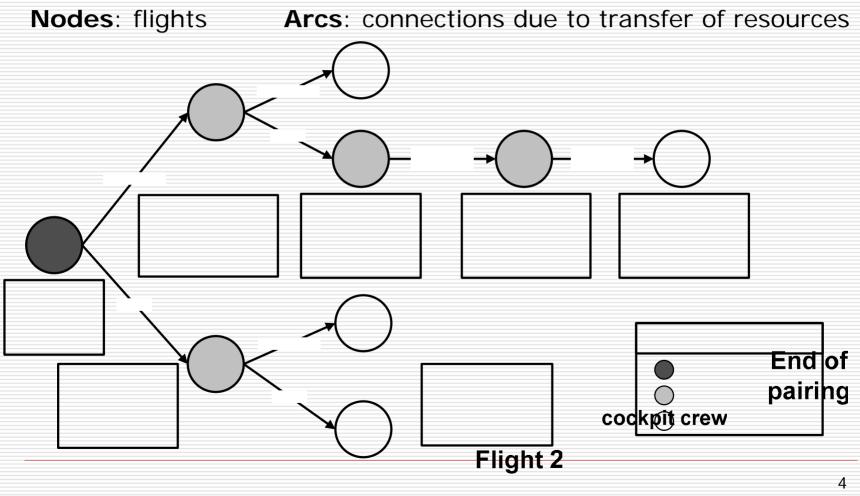
Review

- Our goal is to better understand the relationship between planned and actual operations
- How can changes in the plan improve operational performance?
- □ Two stages of project:
 - Analyze potential for delay propagation
 - Decrease potential for delay propagation

Review of Analysis

- Build propagation trees to evaluate how an individual root delay might propagate through the network
- Construct trees for each flight, each delay interval
- Summarize metrics

Propagation Tree: Example



aircraft

Defining Metrics

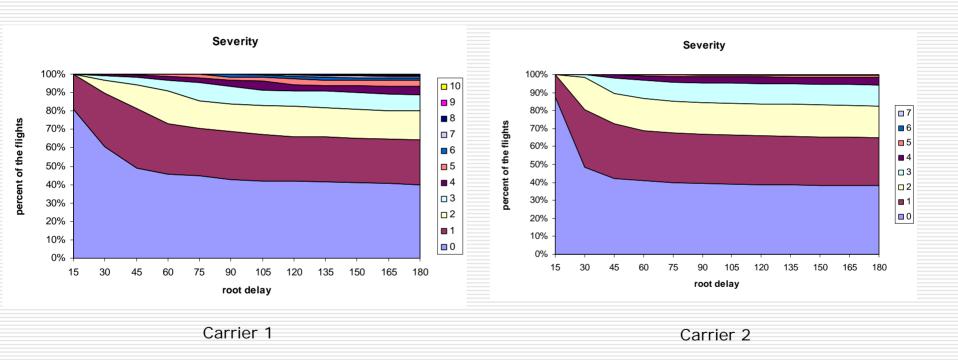
Propagation magnitude

Total minutes of delay propagated in the flight network divided by the original delay

propagation magnitude = $\frac{\text{total propagated delays}}{\text{original delay}}$

- Propagation severity
 - Total number of disrupted flights

Severity Across All Delay Lengths

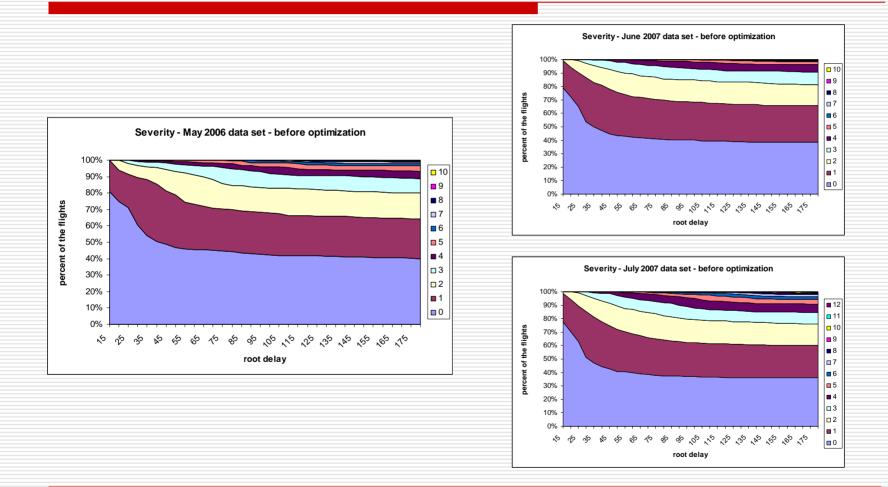


Cohn, Belobaba, Ahmadbeygi, and Guan, 2007

What's New in Analysis

- For first carrier, evaluated two more data sets
 - Both after sizeable change in fleet composition
 - Two different dates (different demand levels, schedules, weather patterns)

Severity Across All Delay Lengths



What's Next in Analysis

- Cabin crews
- Critical passenger itineraries
- Recovery

Review of Optimization

- Can we improve robustness by changing flight times slightly, in order to better utilize the slack?
 - Don't change crew assignments, fleeting, or routing
 - Only changes are to re-allocate slack where it is most needed
- Does not capture all the opportunities to improve robustness
- A starting point that does not require explicit assignment of costs or values to delay

Linear Programming Formulation I

Minimize the expected value of one-layer delay propagation while keeping the connections feasible

$$\begin{array}{lll}
& \text{Min} & \sum_{m \in \mathsf{M}(f_{1}, f_{2}) \in \mathsf{F}} p_{f_{1}}^{m} d_{f_{1}, f_{2}}^{m} \\
& y_{f_{1}, f_{2}} = s_{f_{1}, f_{2}} + x_{f_{1}} + x_{f_{2}} & \forall (f_{1}, f_{2}) \in \mathsf{A} \\
& \int d_{f_{1}, f_{2}}^{m} \ge m - y_{f_{1}, f_{2}} & \forall (f_{1}, f_{2}) \in \mathsf{A} & \forall m \in \mathsf{M} \\
& \int d_{f_{1}, f_{2}}^{m} \ge 0 & \forall (f_{1}, f_{2}) \in \mathsf{F} & \forall m \in \mathsf{M} \\
& d_{f_{1}, f_{2}}^{m} = \max\{0, m - y_{f_{1}, f_{2}}\} \\
& k_{f}^{-} \le x_{f} \le k_{f}^{+} & \forall f \in \mathsf{F} & y_{f_{1}, f_{2}} \ge 0 & \forall (f_{1}, f_{2}) \in \mathsf{A} \\
\end{array}$$

What's New in Optimization

- First approach only looked at one layer of delay
- New approach allows delay to propagate until fully absorb
- Little change on performance (run time)
- Still a linear program
- Some difference in outcome

Linear Programming Formulation II

Minimize the expected value of **all-layers** delay propagation while keeping the connections feasible

Min $\sum_{m \in M} \sum_{f_0 \in M} f_0 \in M$	30 30 30
$y_{f_1, f_2} = s_{f_1, f_2} + x_{f_1} + x_{f_2}$	$\forall (f_1, f_2) \in A$
$d_{f_0,f_i}^m \ge m - y_{f_0,f_i}$	$\forall f_i \in T_{f_0}^m \text{ s.t. } r_{f_0}^m(f_i) = f_0 \forall m \in M$
$d_{f_0,f_i}^m \ge d_{f_0,r_{f_0}^m(f_i)}^m - y_{r_{f_0}^m(f_i),f_i}$	$\forall f_i \in T_{f_0}^m \text{ s.t. } r_{f_0}^m(f_i) \neq f_0 \forall m \in M$
$d_{f_0,f_i}^m \ge 0$	$\forall f_0 \in F$, $f_i \in T_{f_0}^m \forall m \in M$
$k_f^- \le x_f \le k_f^+ \qquad \forall f \in F$	$y_{f_1,f_2} \ge 0 \forall (f_1,f_2) \in A$

Implementation

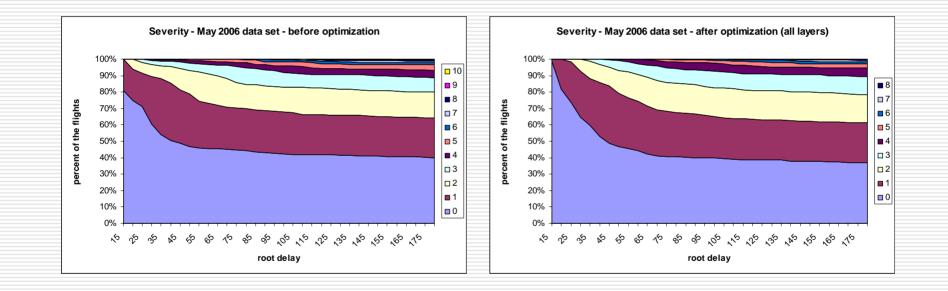
- Implemented the model using CPLEX10.0/C++
- □ Used historical data in order to compute the probability of departure delays (p_f^m)

□ Assumptions:

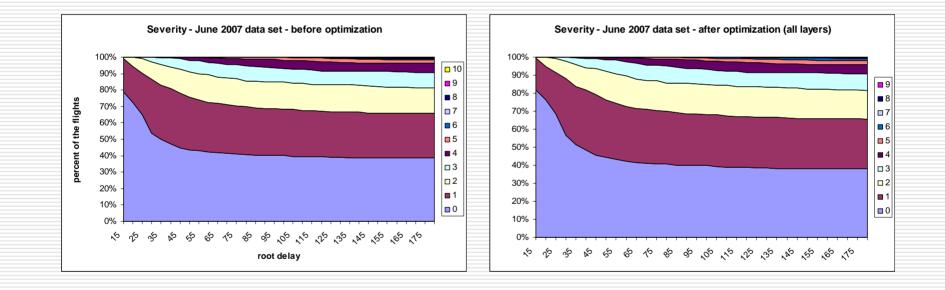
- Equal time windows
- For the flights that start a duty period
- For the flights that end a duty period

 $k_f^+ = k_f^- = 15$ $k_f^+ = 15, \quad k_f^- = 0$ $k_f^+ = 0, \quad k_f^- = 15$

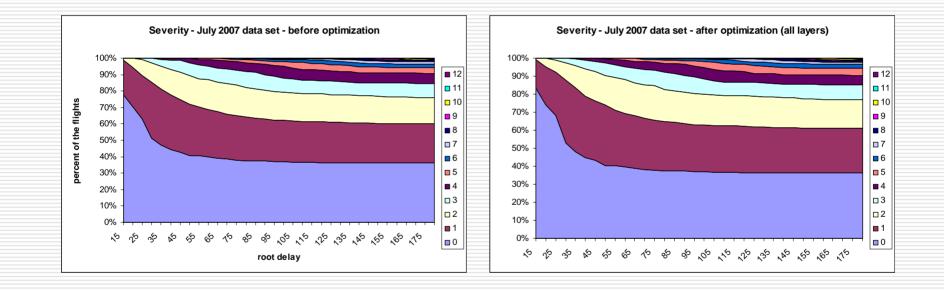
Results



Results



Results



Results, cont.

May 2006

Model I : One-layer propagation model	Model II : All-layers propagation model
obj. fun. value before opt = 789.22 obj. fun. value after opt = 519.103 reduction% = 34.2% running time = 1 sec	obj. fun. value before opt = 1187.76 obj. fun. value after opt = 768.949 reduction% = 35.3% running time = 1 sec obj. fun. based on model I = 787.989 reduction% = 33.6%

Results, cont.

June 2007

Model I : One-layer propagation model	Model II : All-layers propagation model
obj. fun. value before opt = 543.895 obj. fun. value after opt = 441.049 reduction% = 18.9% running time = 1 sec	obj. fun. value before opt = 637.878 obj. fun. value after opt = 519.523 reduction% = 18.5% running time = 2 sec obj. fun. based on model I = 526.812 reduction% = 17.4%

Results, cont.

July 2007

Model I : One-layer propagation model	Model II : All-layers propagation model
obj. fun. value before opt = 652.408 obj. fun. value after opt = 551.009 reduction% = 15.5% running time = 1 sec	obj. fun. value before opt = 758.635 obj. fun. value after opt = 636.817 reduction% = 16.05% running time = 3 sec obj. fun. based on model I = 641.107 reduction% = 15.4%

What's Next in Optimization

- Implementing a simulation to evaluate our surrogate objective function
- In the future, need to better incorporate recovery decisions

Conclusions

- Standard plea for data
- □ Standard plea for feedback
- Special plea for guidance about modeling recovery